气凝胶:能改变世界的多功能材料******
展览会上展出的具有纳米多孔结构的新型材料气凝胶服装
中新社 任海霞摄
【走近超材料①】
编者按超材料具有常规材料不具备的超常物理性质,是国际上重点关注的战略前沿领域。我国也高度重视超材料技术的发展,国家自然科学基金、新材料重大专项等都对超材料研究予以立项支持。近年来,越来越多的科研人员对超材料产生兴趣,使超材料的设计开发进入了一个崭新的天地。据此,本版推出“走近超材料”系列报道,展示超材料技术创新发展与产业化应用情况。
气凝胶具有高比表面积、高空隙率等特殊的微观结构特点,化学性能稳定、导热系数低、耐高温、使用温度范围广、寿命长。近年来,中国、美国、欧洲等国家和地区的研究人员通过改进气凝胶制备工艺,开发出生物质基气凝胶等多种新型气凝胶。
气凝胶是一种超材料,它非常轻,即使把一块气凝胶放在花蕊上也不会将其压弯。目前,各种各样的气凝胶被开发出来,它们或柔软或坚硬,或导电或绝缘,应用领域广泛。1月10日,中铁一局集团有限公司表示,河南省新乡蒸汽管网项目全面通过验收。蒸汽管网对防腐、保温要求极高,其管道选用了高温离心玻璃棉及纳米气凝胶复合保温材料。项目技术负责人汪惺说,纳米气凝胶隔热效果是传统隔热材料的2—5倍,可极大提高施工质量和施工效率,降低施工成本。
作为目前已知导热系数最低、密度最小的固体材料,气凝胶可谓是材料领域的“隔热王者”,并已在航天、石化等领域应用。比如“天问一号”探测器发动机与火星车表面、“长征五号”遥四运载火箭发动机高温燃气系统隔热、嫦娥四号探测器热电池防护等都应用了气凝胶。在我国提出“双碳”目标后,随着技术的不断创新,气凝胶的应用场景也在进一步扩大。
具有耐高温、高弹性、强吸附等特性
气凝胶是一种纳米级的多孔固态新型材料,所有孔的体积合起来占整个气凝胶体积的绝大多数,甚至可以达到99%以上,具有高比表面积、高空隙率、纳米级孔洞、低密度等特殊的微观结构特点,化学性能稳定、导热系数低、耐高温、高弹性、强吸附、防水效果好、使用温度范围广、寿命长。
“可以把气凝胶理解成多孔海绵的一个纳米版。”气凝胶领域技术专家王贝尔说,其孔径在20纳米至50纳米之间。而空气分子大小约为70纳米,大于气凝胶孔隙的直径,因此空气在气凝胶上流动效率极低,加上气凝胶本身比热容很高,热辐射传递能降到最低,因而具有很好的隔热性能。
气凝胶主要分为无机气凝胶、有机气凝胶和有机—无机杂化气凝胶三类。其中,无机气凝胶是以无机物为主体,包括单质气凝胶、氧化物气凝胶和硫化物气凝胶等。有机气凝胶则是以有机物为主体,主要包括酚醛气凝胶、纤维素气凝胶、聚酰亚胺气凝胶、壳聚糖气凝胶以及壳聚糖—纤维素气凝胶等。有机—无机杂化气凝胶可利用有机物和无机物各自优势,实现气凝胶特殊的功能化。
《科学》杂志2021年将气凝胶列为十大热门科学技术之一,并称其为“可以改变世界的多功能新材料”。王贝尔说,气凝胶是《科学》杂志评选出的十大新材料中,唯一一个已大规模落地于实际商业场景的材料。
气凝胶的制备工艺主要分为两步,即通过溶胶—凝胶过程制备凝胶,再利用一定的干燥方法将凝胶内的液态物质替换为气态,从而制得气凝胶。
有数据显示,在气凝胶行业的成本结构中,制造成本约占45%。苏州锦富技术股份有限公司董事长助理郑松说,降低气凝胶成本是行业正在努力的一个方向,目前主要路径之一是自动化产线的落地,而成本降低将会打开更多的应用场景。
生物质基气凝胶成研究热点
据中国石油管道科技研究中心评估,以350摄氏度蒸汽管道的保温应用为例,相比于传统保温材料,气凝胶的保温层厚度可减少2/3,节约能耗40%以上,每公里管道每年可减少二氧化碳排放125吨。
数据显示,2021年油气领域对气凝胶的需求占总需求量的56%,另有18%用于工业隔热、9%用于建筑建造、8%用于交通运输。国家新材料产业发展战略咨询委员会在《2022气凝胶行业研究报告》中指出,在新能源汽车蓄电池芯模组中采用气凝胶阻燃材料,可将电池包高温耐受能力提高至800摄氏度以上。随着新能源汽车产业等的发展,气凝胶在新能源汽车及储能行业应用场景广泛,需求量有望持续提升。
气凝胶发展迅速。国务院发展研究中心国际技术经济研究所分析员李维科说,近年来,中国、美国、欧洲等国家和地区的研究人员通过改进气凝胶制备工艺,开发出生物质基气凝胶、石墨烯气凝胶、聚合物气凝胶等多种新型气凝胶。值得一提的是,生物质原料来源广泛、成本低廉、碳源丰富,利用生物质原料制备环保型多孔碳纤维气凝胶是一种经济、可持续的生产方式,因此目前生物质基气凝胶也成为研究的热点。
比如中国科学技术大学俞书宏院士团队研发出超弹性纤维素气凝胶,该纤维素气凝胶从室温到零下196摄氏度,都表现出不随温度变化的超弹性、优异的抗疲劳性等,在恶劣环境中具有巨大的隔热潜力。且制备中所使用的材料均为生物质原料,有望解决能源密集型技术和石化材料造成的环境污染问题,是传统不可再生气凝胶的理想替代品。
中国林业科学研究院木材工业研究所卢芸研究员团队以木材为基质,将无机、有机气凝胶与木材骨架基体复合,首创了第三代木质纤维素气凝胶。通过对木材及生物质废弃物纤维素的调控,将纤维素比表面积提高了7个数量级,对油污吸附能力高达自身质量的75—300倍,体积用量缩减50%—75%,可降解、可再生。
气凝胶发展驶入“快车道”
气凝胶的发展得到国家政策的持续支持。2014年和2015年,国家发改委连续两年将气凝胶列入《国家重点节能低碳技术推广目录》,开始对气凝胶进行初步推广应用;2018年6月气凝胶被列入建材新兴产业;同年9月,第一个气凝胶方面的国家标准《纳米孔气凝胶复合绝热制品》发布;2020年,《气凝胶保温隔热涂料系统技术标准》启用;2021年,《中共中央、国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》提出,推动气凝胶等新型材料研发应用。
随着气凝胶应用技术不断成熟,气凝胶发展进入“快车道”。不过,李维科说,目前气凝胶研究仍存在一些问题,比如气凝胶在高温条件下热导率增长较快,与纤维等增强基体材料的黏结性较差;生产过程中会用到许多有机溶剂,容易造成环境污染;气凝胶难以回收利用,不利于可持续发展等。
此外,气凝胶生产成本高昂,产品价格昂贵。《2022气凝胶行业研究报告》指出,气凝胶的生产成本主要集中在原材料硅源、设备折旧及能耗方面。有效降低成本既依赖于制备工艺的突破,也需要通过低成本原材料的大规模产业化来实现。
气凝胶是罕见的可以同时满足防火、防水、隔热、隔音等多种需求的材料。李维科说,气凝胶的发展和应用仍然处于不断探索的过程,未来的研究方向主要集中在开发纤维素气凝胶、石墨烯气凝胶、钙钛矿结构气凝胶、非金属单质气凝胶等新型气凝胶上。(记者 李 禾)
多国机构和专家:限制中国旅客入境,没必要******
【环球时报驻德国特约记者 青 木 环球时报记者 邢晓婧 赵瑜莎赵霜】随着中国1月8日出入境放开时间临近,接受《环球时报》采访的多位国外专家认为,只要接种疫苗,政府没有对中国旅客采取入境限制措施的必要。
6日下午,中国国家卫健委发布《新型冠状病毒感染诊疗方案(试行第十版)》。第十版诊疗方案内容包括对疾病名称进行调整、不再判定“疑似病例”、增加新冠病毒抗原检测阳性作为诊断标准等。本周日,中国将有序恢复公民出境游,亚太地区特别是以旅游业为支柱的东南亚国家期待中国游客的回归。据路透社6日报道,柬埔寨、印度尼西亚、新加坡等东南亚国家不要求对入境的中国旅客进行核酸检测,马来西亚和泰国仅对从中国起飞的飞机废水进行病毒检测。
然而,未能对来自中国的入境者达成统一对策的欧盟提出强烈建议,希望欧盟国家对中国入境者实施新冠检测。5日,德国联邦卫生部长卡尔·劳特巴赫宣布,任何从中国前往德国旅行的人都必须在飞行前接受新冠病毒检测,“只有在测试呈阴性的情况下才允许入境。”他表示,至少应进行一项快速抗原检测。此外,比利时、瑞典、奥地利和希腊也宣布强制检测决定。
德国航空运输业协会指出,世界卫生组织(WHO)和欧盟机构 ECDC都发现,此类旅行限制并不能有效防止新冠病毒的传播,因此没有必要要求旅客在离开中国前进行测试。欧洲航空协会(A4E)、国际航空运输协会(IATA)和国际机场理事会欧洲分会(ACI Europe)1月5日也发表联合声明称,对欧盟周三建议让来自中国的旅客在抵达欧洲之前进行新冠病毒检测等行为表示“遗憾”,并表示这是一种未经思考的“下意识反应”。欧洲旅游代理商及旅行社协会秘书长埃里克·德雷辛则批评称,各国政府的行动“更多是出于民粹主义原因,而不是为了实现公共卫生目标”。
日本医疗管理研究所理事长上昌广在接受《环球时报》记者采访时说,虽然不能完全排除在中国出现新的变异毒株的可能性,但即便出现,大概率属于奥密克戎毒株的系统当中,只要接种了疫苗,日韩等国没有担心害怕的必要。最近流行的XBB毒株实际上与奥密克戎毒株类似,无需担惊受怕。奥密克戎毒株已经在东亚国家传播开来,日本采取的“水际对策”(即边境防控)措施不可能遏制病毒传播。除非中国出现毒性极强的变异毒株,“水际对策”措施才有可能发挥一定作用。
美国哥伦比亚大学的流行病学专家杰弗里·沙曼告诉《环球时报》记者,任何国家都不能排除出现新型变异毒株的可能性,如果有些国家由此认为中国“危险”,那么实际上“旅行限制”并不会消除这种“危险”,因为病毒已经无处不在。中国此前采取的防疫政策在很大程度上有效阻止了病毒进入中国,虽然无法完全阻挡病毒,但若当初没有采取这种严格的防控措施,病毒则会迅速传播开来。
美国传染病学会6日也在社交媒体上表示,美国政府要求中国旅客入境前进行核酸检测的做法,不仅不会在限制病毒的传播上产生多大的影响,也无助于全面评估全球病例增加所带来的影响。该声明认为,如果美国希望更好地监测病毒和疫情的发展与走向,那么政府就应该从狭隘的地理视角中跳出来,采取更为广泛的监测策略。
(文图:赵筱尘 巫邓炎)